78 research outputs found

    Clinical Examination for the Prediction of Mortality in the Critically Ill : The Simple Intensive Care Studies-I

    Get PDF
    Objectives: Caregivers use clinical examination to timely recognize deterioration of a patient, yet data on the prognostic value of clinical examination are inconsistent. In the Simple Intensive Care Studies-I, we evaluated the association of clinical examination findings with 90-day mortality in critically ill patients. Design: Prospective single-center cohort study. Setting: ICU of a single tertiary care level hospital between March 27, 2015, and July 22, 2017. Patients: All consecutive adults acutely admitted to the ICU and expected to stay for at least 24 hours. Interventions: A protocolized clinical examination of 19 clinical signs conducted within 24 hours of admission. Measurements Main Results: Independent predictors of 90-day mortality were identified using multivariable logistic regression analyses. Model performance was compared with established prognostic risk scores using area under the receiver operating characteristic curves. Robustness of our findings was tested by internal bootstrap validation and adjustment of the threshold for statistical significance. A total of 1,075 patients were included, of whom 298 patients (28%) had died at 90-day follow-up. Multivariable analyses adjusted for age and norepinephrine infusion rate demonstrated that the combination of higher respiratory rate, higher systolic blood pressure, lower central temperature, altered consciousness, and decreased urine output was independently associated with 90-day mortality (area under the receiver operating characteristic curves = 0.74; 95% CI, 0.71-0.78). Clinical examination had a similar discriminative value as compared with the Simplified Acute Physiology Score-II (area under the receiver operating characteristic curves = 0.76; 95% CI, 0.73-0.79; p = 0.29) and Acute Physiology and Chronic Health Evaluation-IV (using area under the receiver operating characteristic curves = 0.77; 95% CI, 0.74-0.80; p = 0.16) and was significantly better than the Sequential Organ Failure Assessment (using area under the receiver operating characteristic curves = 0.67; 95% CI, 0.64-0.71; p <0.001). Conclusions: Clinical examination has reasonable discriminative value for assessing 90-day mortality in acutely admitted ICU patients. In our study population, a single, protocolized clinical examination had similar prognostic abilities compared with the Simplified Acute Physiology Score-II and Acute Physiology and Chronic Health Evaluation-IV and outperformed the Sequential Organ Failure Assessment score.Peer reviewe

    Clinical examination for diagnosing circulatory shock

    Get PDF
    Purpose of review: In the acute setting of circulatory shock, physicians largely depend on clinical examination and basic laboratory values. The daily use of clinical examination for diagnostic purposes contrasts sharp with the limited number of studies. We aim to provide an overview of the diagnostic accuracy of clinical examination in estimating circulatory shock reflected by an inadequate cardiac output (CO). Recent findings: Recent studies showed poor correlations between CO and mottling, capillary refill time or central-to-peripheral temperature gradients in univariable analyses. The accuracy of physicians to perform an educated guess of CO based on clinical examination lies around 50% and the accuracy for recognizing a low CO is similar. Studies that used predefined clinical profiles composed of several clinical examination signs show more reliable estimations of CO with accuracies ranging from 81 up to 100%. Summary: Single variables obtained by clinical examination should not be used when estimating CO. Physician's educated guesses of CO based on unstructured clinical examination are like the flip of a coin'. Structured clinical examination based on combined clinical signs shows the best accuracy. Future studies should focus on using a combination of signs in an unselected population, eventually to educate physicians in estimating CO by using predefined clinical profiles

    Long-term outcome of elderly out-of-hospital cardiac arrest survivors as compared with their younger counterparts and the general population

    Get PDF
    Background: Over the past decade, prehospital and in-hospital treatment for out-of-hospital cardiac arrest (OHCA) has improved considerably. There are sparse data on the long-term outcome, especially in elderly patients. We studied whether elderly patients benefit to the same extent compared with younger patients and at long-term follow up as compared with the general population. Methods: Between 2001 and 2010, data from all patients presented to our hospital after OHCA were recorded. Elderly patients (>= 75 years) were compared with younger patients. Neurological outcome was classified as cerebral performance category (CPC) at hospital discharge and long-term survival was compared with younger patients and predicted survival rates of the general population. Results: Of the 810 patients admitted after OHCA, a total of 551 patients (68%) achieved return of spontaneous circulation, including 125 (23%) elderly patients with a mean age of 81 +/- 5 years. In-hospital survival was lower in elderly patients compared with younger patients with rates of 33% versus 57% (p 2 was observed versus 2.5% of their younger counterparts (p = 0.103). Elderly patients had a median survival of 6.5 [95% confidence interval (CI) 2.0-7.9] years compared with 7.7 (95% CI 7.5-7.9) years of the general population (p = 0.019). Conclusions: The survival rate after OHCA in elderly patients is approximately half that of younger patients. Elderly patients who survive to discharge frequently have favorable neurological outcomes and a long-term survival that approximates that of the general population

    Non-invasive oscillometric versus invasive arterial blood pressure measurements in critically ill patients:A post hoc analysis of a prospective observational study

    Get PDF
    PURPOSE: The aim was to compare non-invasive blood pressure measurements with invasive blood pressure measurements in critically ill patients. METHODS: Non-invasive blood pressure was measured via automated brachial cuff oscillometry, and simultaneously the radial arterial catheter-derived measurement was recorded as part of a prospective observational study. Measurements of systolic arterial pressure (SAP), diastolic arterial pressure (DAP), and mean arterial pressure (MAP) were compared using Bland-Altman and error grid analyses. RESULTS: Paired measurements of blood pressure were available for 736 patients. Observed mean difference (±SD, 95% limits of agreement) between oscillometrically and invasively measured blood pressure was 0.8 mmHg (±15.7 mmHg, -30.2 to 31.7 mmHg) for SAP, -2.9 mmHg (±11.0 mmHg, -24.5 to 18.6 mmHg) for DAP, and -1.0 mmHg (±10.2 mmHg, -21.0 to 18.9 mmHg) for MAP. Error grid analysis showed that the proportions of measurements in risk zones A to E were 78.3%, 20.7%, 1.0%, 0%, and 0.1% for MAP. CONCLUSION: Non-invasive blood pressure measurements using brachial cuff oscillometry showed large limits of agreement compared to invasive measurements in critically ill patients. Error grid analysis showed that measurement differences between oscillometry and the arterial catheter would potentially have triggered at least low-risk treatment decisions in one in five patients

    Feasibility of cardiac output measurements in critically ill patients by medical students

    Get PDF
    Background: Critical care ultrasonography (CCUS) is increasingly applied also in the intensive care unit (ICU) and performed by non-experts, including even medical students. There is limited data on the training efforts necessary for novices to attain images of sufficient quality. There is no data on medical students performing CCUS for the measurement of cardiac output (CO), a hemodynamic variable of importance for daily critical care. Objective: The aim of this study was to explore the agreement of cardiac output measurements as well as the quality of images obtained by medical students in critically ill patients compared to the measurements obtained by experts in these images. Methods: In a prospective observational cohort study, all acutely admitted adults with an expected ICU stay over 24 h were included. CCUS was performed by students within 24 h of admission. CCUS included the images required to measure the CO, i.e., the left ventricular outflow tract (LVOT) diameter and the velocity time integral (VTI) in the LVOT. Echocardiography experts were involved in the evaluation of the quality of images obtained and the quality of the CO measurements. Results: There was an opportunity for a CCUS attempt in 1155 of the 1212 eligible patients (95%) and in 1075 of the 1212 patients (89%) CCUS examination was performed by medical students. In 871 out of 1075 patients (81%) medical students measured CO. Experts measured CO in 783 patients (73%). In 760 patients (71%) CO was measured by both which allowed for comparison; bias of CO was 0.0 L min−1 with limits of agreement of − 2.6 L min−1 to 2.7 L min−1. The percentage error was 50%, reflecting poor agreement of the CO measurement by students compared with the experts CO measurement. Conclusions: Medical students seem capable of obtaining sufficient quality CCUS images for CO measurement in the majority of critically ill patients. Measurements of CO by medical students, however, had poor agreement with expert measurements. Experts remain indispensable for reliable CO measurements. Trial registration Clinicaltrials.gov; http://www.clinicaltrials.gov; registration number NCT02912624

    Associations between tricuspid annular plane systolic excursion to reflect right ventricular function and acute kidney injury in critically ill patients : a SICS-I sub-study

    Get PDF
    Abstract Background Acute kidney injury (AKI) occurs in up to 50% of all critically ill patients and hemodynamic abnormalities are assumed to contribute, but their nature and share is still unclear. We explored the associations between hemodynamic variables, including cardiac index and right ventricular function, and the occurrence of AKI in critically ill patients. Methods In this prospective cohort study, we included all patients acutely admitted to an intensive care unit (ICU). Within 24 h after ICU admission clinical and hemodynamic variables were registered including ultrasonographic measurements of cardiac index and right ventricular function, assessed using tricuspid annular plane systolic excursion (TAPSE) and right ventricular systolic excursion (RV S’). Maximum AKI stage was assessed according to the KDIGO criteria during the first 72 h after admission. Multivariable logistic regression modeling was used including both known predictors and univariable significant predictors of AKI. Secondary outcomes were days alive outside ICU and 90-day mortality. Results A total of 622 patients were included, of which 338 patients (54%) had at least AKI stage 1 within 72 h after ICU admission. In the final multivariate model higher age (OR 1.01, 95% CI 1.00–1.03, for each year), higher weight (OR 1.03 CI 1.02–1.04, for each kg), higher APACHE IV score (OR 1.02, CI 1.01–1.03, per point), lower mean arterial pressure (OR 1.02, CI 1.01–1.03, for each mmHg decrease) and lower TAPSE (OR 1.05, CI 1.02–1.09 per millimeter decrease) were all independent predictors for AKI in the final multivariate logistic regression model. Sepsis, cardiac index, RV S’ and use of vasopressors were not significantly associated with AKI in our data. AKI patients had fewer days alive outside of ICU, and their mortality rate was significantly higher than those without AKI. Conclusions In our cohort of acutely admitted ICU patients, the incidence of AKI was 54%. Hemodynamic variables were significantly different between patients with and without AKI. A worse right ventricle function was associated with AKI in the final model, whereas cardiac index was not

    Clinical Examination for the Prediction of Mortality in the Critically Ill:The Simple Intensive Care Studies-I

    Get PDF
    Objectives: Caregivers use clinical examination to timely recognize deterioration of a patient, yet data on the prognostic value of clinical examination are inconsistent. In the Simple Intensive Care Studies-I, we evaluated the association of clinical examination findings with 90-day mortality in critically ill patients. Design: Prospective single-center cohort study. Setting: ICU of a single tertiary care level hospital between March 27, 2015, and July 22, 2017. Patients: All consecutive adults acutely admitted to the ICU and expected to stay for at least 24 hours. Interventions: A protocolized clinical examination of 19 clinical signs conducted within 24 hours of admission. Measurements Main Results: Independent predictors of 90-day mortality were identified using multivariable logistic regression analyses. Model performance was compared with established prognostic risk scores using area under the receiver operating characteristic curves. Robustness of our findings was tested by internal bootstrap validation and adjustment of the threshold for statistical significance. A total of 1,075 patients were included, of whom 298 patients (28%) had died at 90-day follow-up. Multivariable analyses adjusted for age and norepinephrine infusion rate demonstrated that the combination of higher respiratory rate, higher systolic blood pressure, lower central temperature, altered consciousness, and decreased urine output was independently associated with 90-day mortality (area under the receiver operating characteristic curves = 0.74; 95% CI, 0.71-0.78). Clinical examination had a similar discriminative value as compared with the Simplified Acute Physiology Score-II (area under the receiver operating characteristic curves = 0.76; 95% CI, 0.73-0.79; p = 0.29) and Acute Physiology and Chronic Health Evaluation-IV (using area under the receiver operating characteristic curves = 0.77; 95% CI, 0.74-0.80; p = 0.16) and was significantly better than the Sequential Organ Failure Assessment (using area under the receiver operating characteristic curves = 0.67; 95% CI, 0.64-0.71; p <0.001). Conclusions: Clinical examination has reasonable discriminative value for assessing 90-day mortality in acutely admitted ICU patients. In our study population, a single, protocolized clinical examination had similar prognostic abilities compared with the Simplified Acute Physiology Score-II and Acute Physiology and Chronic Health Evaluation-IV and outperformed the Sequential Organ Failure Assessment score

    Dopamine in critically ill patients with cardiac dysfunction:A systematic review with meta-analysis and trial sequential analysis

    Get PDF
    Background Dopamine has been used in patients with cardiac dysfunction for more than five decades. Yet, no systematic review has assessed the effects of dopamine in critically ill patients with cardiac dysfunction. Methods This systematic review was conducted following The Cochrane Handbook for Systematic Reviews of Interventions. We searched for trials including patients with observed cardiac dysfunction published until 19 April 2018. Risk of bias was evaluated and Trial Sequential Analyses were conducted. The primary outcome was all-cause mortality at longest follow-up. Secondary outcomes were serious adverse events, myocardial infarction, arrhythmias, and renal replacement therapy. We used GRADE to assess the certainty of the evidence. Results We identified 17 trials randomising 1218 participants. All trials were at high risk of bias and only one trial used placebo. Dopamine compared with any control treatment was not significantly associated with relative risk of mortality (60/457 [13%] vs 90/581 [15%]; RR 0.91; 95% confidence interval 0.68-1.21) or any other patient-centred outcomes. Trial Sequential Analyses of all outcomes showed that there was insufficient information to confirm or reject our anticipated intervention effects. There were also no statistically significant associations for any of the outcomes in subgroup analyses by type of comparator (inactive compared to potentially active), dopamine dose (low compared to moderate dose), or setting (cardiac surgery compared to heart failure). Conclusion Evidence for dopamine in critically ill patients with cardiac dysfunction is sparse, of low quality, and inconclusive. The use of dopamine for cardiac dysfunction can neither be recommended nor refuted

    Clinical examination, critical care ultrasonography and outcomes in the critically ill : cohort profile of the Simple Intensive Care Studies-I

    Get PDF
    Purpose In the Simple Intensive Care Studies-I (SICS-I), we aim to unravel the value of clinical and haemodynamic variables obtained by physical examination and critical care ultrasound (CCUS) that currently guide daily practice in critically ill patients. We intend to (1) measure all available clinical and haemodynamic variables, (2) train novices in obtaining values for advanced variables based on CCUS in the intensive care unit (ICU) and (3) create an infrastructure for a registry with the flexibility of temporarily incorporating specific (haemodynamic) research questions and variables. The overall purpose is to investigate the diagnostic and prognostic value of clinical and haemodynamic variables. Participants The SICS-I includes all patients acutely admitted to the ICU of a tertiary teaching hospital in the Netherlands with an ICU stay expected to last beyond 24 hours. Inclusion started on 27 March 2015. Findings to date On 31 December 2016, 791 eligible patients fulfilled our inclusion criteria of whom 704 were included. So far 11 substudies with additional variables have been designed, of which six were feasible to implement in the basic study, and two are planned and awaiting initiation. All researchers received focused training for obtaining specific CCUS images. An independent Core laboratory judged that 632 patients had CCUS images of sufficient quality. Future plans We intend to optimise the set of variables for assessment of the haemodynamic status of the critically ill patient used for guiding diagnostics, prognosis and interventions. Repeated evaluations of these sets of variables are needed for continuous improvement of the diagnostic and prognostic models. Future plans include: (1) more advanced imaging; (2) repeated clinical and haemodynamic measurements; (3) expansion of the registry to other departments or centres; and (4) exploring possibilities of integration of a randomised clinical trial superimposed on the registry. Study registration number NCT02912624; Pre-results.Peer reviewe
    • …
    corecore